Chemical Synchronization / 共感器官

March 31, 2017

A Collaboration with Takeuchi Lab




In nature, animals, plants and insects coexist as part of a synchronized ecosystem. They communicate with each other invisibly and inaudibly using a combination of smell and chemosignals.
Inspired by this natural phenomenon, Chemical Synchronization is a biological wearable device which, when worn on the neck,  enables you to sense other people’s emotions and synchronize your own accordingly. Based on research by Takeuchi Lab, it uses a sensor made with chemoreceptors extracted from insects that can detect emotions like exhilaration and happiness through chemicals found in human sweat. Once sensed, these emotions can be filtered and amplified, and eventually transferred to other humans through a microneedle patch which delivers hormones like oxytocin and endorphins.
We envision a future where the device would be able to sense a broad range of emotions and allow you to chemically synchronize remotely.





A recent piece of research by Gün Semin and his colleagues at Utrecht University has demonstrated that humans are able to detect happiness, fear and disgust in others using the sense of smell. The research suggested that this could be linked to a correlation between emotions and the patterns of chemosignals released in sweat. These chemosignals are mostly present in axillary sweat, and they are composed of aliphatic carboxylic acids group mainly.

Takeuchi Lab at the University of Tokyo have integrated chemoreceptors from mosquitoes into a bio-hybrid sensor which detects human sweat. Bio-hybrid sensing is particularly advantageous in its capability of differentiating molecules that are very similar in structure. We have used this research as our starting point to speculate on the possibility of detecting and differentiating the specific chemosignals related to particular emotions. We project a scenario where mosquitoes and other insects could detect aliphatic carboxylic acids molecules - the chemosignals of “happiness”.


一方、東京大学の竹内研究室は、蚊の嗅覚受容体をデバイスに組み込み、汗のニオイで人間を認識できるロボットやバイオ・ハイブリッドセンサーを開発してきた。バイオ・ハイブリッドセンサーの利点は、似通ったニオイであっても高い精度で区別できることにある。 私たちは、この技術から、各感情に特有のニオイ成分を感知し嗅ぎ分けることで、






Takeuchi laboratory strives to develop new methods of measuring biological and environmental parameters. This is done through the integration of biological materials (including DNA, protein, lipids, and cells) into devices using MEMS and microfluidic technologies. Takeuchi Lab is the first known laboratory in the world to have succeeded at the simultaneous construction of several different cell membranes (phospholipid bilayer). This technology has made it possible to measure electrical signals produced by different cell membranes and to carry out analysis of membrane bound proteins and develop smell sensors. Moreover, the laboratory has developed capsulation of biological molecules with artificial membranes by applying water jet flow to the center of the membrane and changing the shape spherical. Dynamic microarray technology which allows for analysis was developed using 10000 capsules arrayed with speed.
Another research theme that the laboratory is working on is a method to build dense three dimensional structures using cell beads, which is necessary for regenerative therapy. By applying the method to modify microbeads, this laboratory achieved to develop hydrogel beads which can change the light intensity in response to blood sugar level. This lead to invention of blood sugar sensor which can be incorporated inside the body for more than 4 months for the first time in the world.


竹内研究室は、マイクロ・ナノデバイス技術を異分野に応用することで、 新しい研究分野や産業を創出することを目指している。そのなかでも、MEMSやマイクロ流体デバイス技術を駆使して、DNAやタンパク質、脂質、細胞などの生体材料をデバイス中に適切に組み込み、生体情報や環境情報を計測する新規手法を研究・開発してきた。 






Share on Facebook
Share on Twitter
Please reload